
Back End
Basic Fundamentals



Table of Contents

● What Budget Collector Uses?
● Visualization System
● Client and Server 
● HTTP Requests
● Flask
● Summary



What Budget Collector Uses?

● Front-end:
○ JavaScript, HTML, CSS 
○ built within the wordpress ecosystem

● Back-end:
○ Airtable

■ Contains art information (artist names, images, region, etc)
■ CANNOT manipulate data within airtable

○ AWS EC2
■ Backend server and database for website
■ CAN post manipulated data or run backend code

● Your Github Repo:
○ Needs to detail:

■ how to run it locally
■ what front-end & backend technologies that your using (flask, django, etc)



Dashboards Rendering

Visualization

Database Data Analytics

Data MiningStorage

Fr
on

te
nd

/C
lie

nt
B

ac
ke

nd
/S

er
ve

r

Query API

Query Processor

Visualization System

Topology



Client and Server

Client

● Any internet connected device or 
software (e.g. iphone, web browser, etc)

● Makes HTTP requests

Server

● A device that stores web server software 
and component files (e.g. html, cvs, etc)

● Responds to clients with component 
files (i.e. data)



HTTP Requests

● HTTP is a request-response protocol for supporting client-server 
communications

● Proxy: Entities in between the client server request (eg, modems, routers, etc)

Client Proxy Proxy Server

From: 
https://developer.mozilla.org/en
-US/docs/Web/HTTP/Overview 

https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview


HTTP Requests: Methods

GET: Request a representation of the specified data.

POST: Submits data to the server.

HEAD: Request information similar to GET, but without response body

PUT: Submits data to replace an existing resource. 

DELETE: Deletes the specified data.

CONNECT: Starts communication with the server.

OPTIONS: Details the options allowed with the server.

TRACE: A loopback test.

PATCH: Makes partial modifications to a specified data on the server.



HTTP Requests: GET and POST Examples

GET

● Visible to everyone within the URL. Less secure.

POST

● Data not displayed in the URL. Safer.

POST /test HTTP/1.1
Host: foo.example
Content-Type: application/x-www-form-urlencoded
Content-Length: 27

field1=value1&field2=value2

GET /test?field1=value1&field2=value2



Flask

● Python web framework for developing applications
● Can build smaller applications compared to Django
● Easily changeable and integrates with front-end and back-end applications



Flask: First Program



Flask: First Program

1. Import Flask class



Flask: First Program

1. Import Flask class
2. Create an instance of the class



Flask: First Program

1. Import Flask class
2. Create an instance of the class
3. Use route() decorator to tell which URL 

triggers functions



Flask: First Program

1. Import Flask class
2. Create an instance of the class
3. Use route() decorator to tell which URL 

triggers functions
4. Function returns message to display in 

browser



Flask: Running Dev Environment



Flask: HTTP Methods



Flask: HTTP Methods



Flask: HTTP Methods



Summary

● HTTP protocols allows you to send and receive data from the users
● Web application might try multiple different methods at identical URLs
● Flask is a micro framework for HTTP protocols in python.
● Dynamic routing allows for the use of variable names in the URL


